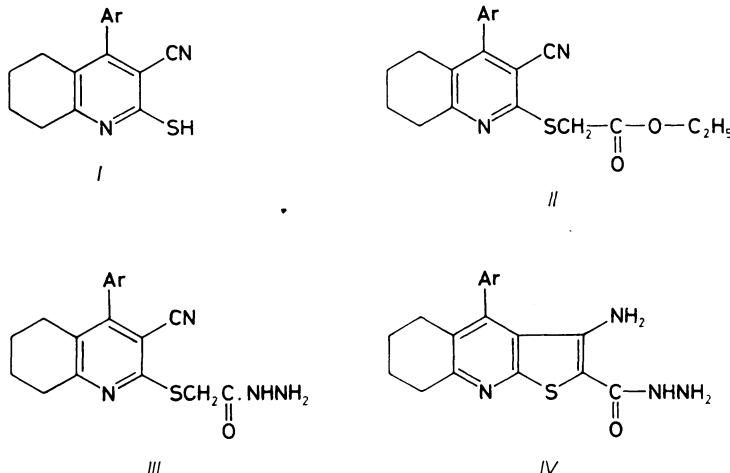


SYNTHESIS AND APPLICATION OF SOME NEW S-(SUBSTITUTED)-THIO- AND THIENOQUINOLINE DERIVATIVES AS ANTIMICROBIAL AGENTS

Ibrahim M. A. AWAD, Abdu E. ABDEL-RAHMAN* and Eify A. BAKHITE

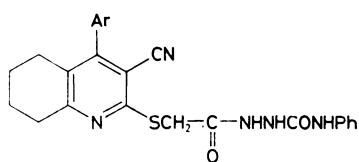
Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt

Received May 21, 1990

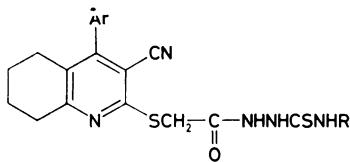

Accepted February 14, 1991

Ethyl (4-aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio) acetate (*IIa*, *IIb*) were prepared and reacted with hydrazine hydrate to give hydrazides *IIIa*, *IIIb* which underwent cyclization into thienoquinoline derivatives *IVa*, *IVb*. Reaction of *IIIa*, *IIIb* with phenyl isocyanate yielded semi-carbazides *Va*, *Vb*. Similarly, *IIIa*, *IIIb* and *IVb* were interacted with methyl/phenyl isothiocyanates affording the corresponding thiosemicarbazide derivatives *VIa*–*VIId* and *XIVa*, *XIVb* respectively. On the other hand, condensation of *IIIb* with acetylacetone gave the pyrazole *VII* which upon treatment with ethoxide furnished *VIII*. Also, *IIIa*, *IIIb* and *IVa*, *IVb* reacted with aromatic aldehydes to afford hydrazone *IXa*–*IXf* and *XIa*–*XIf* respectively. Cyclodehydration of *IXd*–*IXf* with thioglycolic acid furnished 4-thiazolidinone derivatives *Xa*–*Xc*. Moreover, *IVb* was reacted with formic acid/acetic anhydride to give *XII* and *XIII*. Diazotization of *IVb* gave azide *XV* which underwent Curtius rearrangement into *XVI*. The structures of all newly synthesized compounds were confirmed by elemental analyses and spectral data. Also, the most of these compounds were tested in vitro for their antimicrobial activities against some Gram-positive and Gram-negative bacteria.

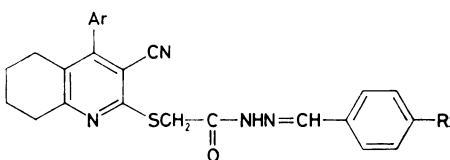
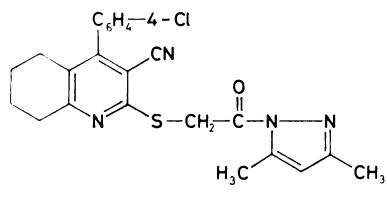
Some quinolines have been found to possess antimalarial, antifilarial and anti-hypertensive activities^{1–4}. Also, many thiosemicarbazides are known for their good antibacterial^{5,6}, antifungal^{7,8}, herbicidal⁹, antiacetylcholinesterase¹⁰ and antitubercular¹¹ activities. Acid hydrazides and some arylidenes are reported to be exhibit antimicrobial activities^{12–14}. Some thiazolidinone derivatives have been found to be biologically important compounds having anticonvulsant and tuberculostatic effects^{15–18}. Moreover, pyrazole derivatives have been associated with antifungal¹⁹, antibacterial²⁰ and antimicrobial²¹ activities. All these observations prompted us to synthesize the title compounds wherein biologically active moieties are present and to evaluate the antibacterial activities of them.


Reaction of 4-aryl-3-cyano-2-mercaptop-5,6,7,8-tetrahydroquinolines (*Ia*, *Ib*) with ethyl chloroacetate in refluxing ethanol containing anhydrous sodium acetate gave the desired ethyl (4-aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio)acetates (*IIa*, *IIb*). These esters (*IIa*, *IIb*) were reacted with hydrazine hydrate in absolute ethanol

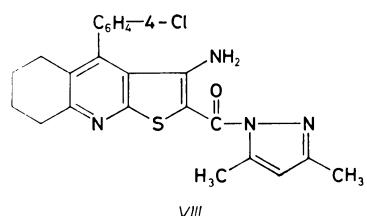
to give (4-aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio)acethydrazides (*IIIa, IIIb*). The precursors *IVa, IVb* were easily synthesized by cyclization of hydrazides *IIIa, IIIb* in refluxing ethanol containing anhydrous potassium carbonate.

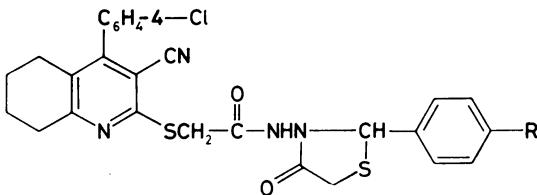

In formulae I-IV: a, Ar = C₆H₅; b, Ar = 4-Cl-C₆H₄

Reaction of hydrazides *IIIa*, *IIIb* with phenyl isocyanate yielded 1-(4-aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio)acetyl-4-phenylsemicbazides (*Va*, *Vb*). Similarly, *IIIa*, *IIIb* were reacted with methyl and/or phenyl isothiocyanate to give the corresponding thiosemicbazides *VIa*–*VIf* in good yields. Condensation of *IIIb* with acetylacetone in refluxing ethanol gave 1-(3-cyano-4-*p*-chlorophenyl-5,6,7,8-tetrahydro-2-quinolinylthio)acetyl-3,5-dimethylpyrazole (*VII*) which upon cyclization with sodium ethoxide in ethanol furnished thienoquinoline *VIII*. The latter compound *VIII* was also synthesized by reaction of *IVb* with acetylacetone. Reaction of *IIIa*, *IIIb* with aromatic aldehydes by refluxing in ethanol yielded N¹-benzylidene-(4-aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio)acethydrazides (*IXa*–*IXf*). Cyclodehydration of *IXd*–*IXf* with thioglycolic acid by refluxing in dry benzene for long time gave 4-thiazolidinone derivatives *Xa*–*Xc*. Compounds *IXa*–*IXf* on warming in ethanol containing sodium ethoxide, underwent smooth cyclization into N-benzylidene-3-amino-4-aryl-5,6,7,8-tetrahydro-thieno[2,3-*b*]quinoline-2-carbohydrazides (*XIa*–*XIf*). The latter compounds (*XIa*–*XIf*) were also confirmed by another synthetic route through reaction of *IVa*, *IVb* with aromatic aldehydes in refluxing ethanol.

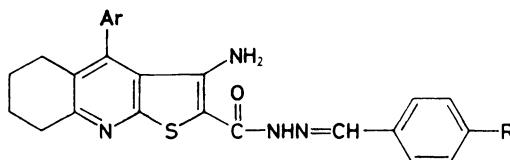
Va, Ar = C₆H₅


Vb, Ar = 4 - Cl - C₆H₄

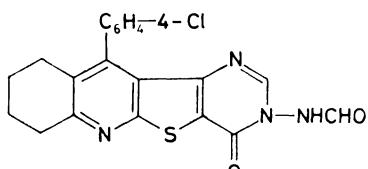
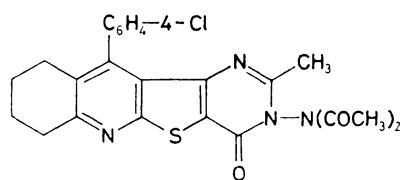
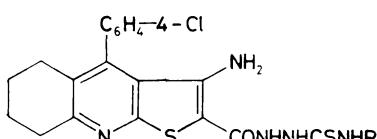
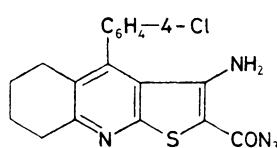
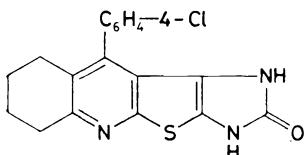
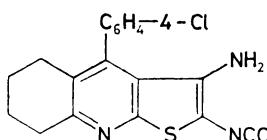

	Ar	R
<i>VIa</i>	C ₆ H ₅	CH ₃
<i>VIb</i>	C ₆ H ₅	C ₆ H ₅
<i>VIc</i>	4 - Cl - C ₆ H ₄	CH ₃
<i>VID</i>	4 - Cl - C ₆ H ₄	C ₆ H ₅

	Ar	R
<i>IXa</i>	C ₆ H ₅	H
<i>IXb</i>	C ₆ H ₅	OCH ₃
<i>IXc</i>	C ₆ H ₅	Cl
<i>IXd</i>	4 - Cl - C ₆ H ₄	H
<i>IXe</i>	4 - Cl - C ₆ H ₄	OCH ₃
<i>IXf</i>	4 - Cl - C ₆ H ₄	Cl

VII


Xa, R = H

Xb, R = OCH₃







Xc, R = Cl

Furthermore, interaction of *IVb* with formic acid and/or acetic anhydride led to the formation of tetracyclic compounds *XII* and *XIII*, respectively. Also, *IVb* was

reacted with methyl and/or phenyl isothiocyanate giving 1-[(3-amino-4-*p*-chlorophenyl-5,6,7,8-tetrahydro-thieno[2,3-*b*]quinolin-2-yl)carbonyl]-4-substituted thiosemicarbazides (*XIVa*, *XIVb*) in nearly quantitative yields. Finally, treatment of *IV* in glacial acetic acid with sodium nitrite at room temperature gave 3-amino-4-*p*-chlorophenyl-5,6,7,8-tetrahydro-thieno[2,3-*b*]quinoline-2-carbonylazide (*XV*). Com-

	Ar	R		Ar	R
<i>XIa</i>	C ₆ H ₅	H	<i>XI d</i>	4-Cl-C ₆ H ₄	H
<i>XIb</i>	C ₆ H ₅	OCH ₃	<i>XI e</i>	4-Cl-C ₆ H ₄	OCH ₃
<i>XIc</i>	C ₆ H ₅	Cl	<i>XI f</i>	4-Cl-C ₆ H ₄	Cl

*XII**XIII**XIVa*, R = CH₃*XIVb*, R = C₆H₅*XV**XVI**XVII*

ound *XV* underwent Curtius rearrangement in boiling tert-butyl alcohol into tetracyclic compound *XVI* through intermediate formation of isocyanate *XVII*.

The structures of all synthesized compounds were confirmed on the basis of their elemental analyses (Table I), IR and ^1H NMR spectra.

Biological Evaluation

Most of the synthesized compounds were evaluated for their antimicrobial activities against five strains of bacteria (Table II). The results indicated that most of the tested compounds exhibit mild to strong activities (inhibition zones ranged from 10 to 60 mm) against *Bacillus cereus*, *Micrococcus roseus* and *Staphylococcus aureus*. Some of the possess moderate to strong inhibitory effects (inhibition zones ranged from 20 to 70 mm) against *Escherichia coli*. Whereas all compounds being inactive against *Serratia rhodnii* except for *XV* which showed remarkable activity against it. Also, it is observed that all compounds containing thiophene ring (*VIII*, *XIa*, *XIf*, *XII*, *XIII*, *XIVa*, *XIVb* and *XV*) exhibited the strongest activities against *Bacillus cereus*, *Micrococcus roseus*, *Staphylococcus aureus*, *Escherichia coli* and no activity against *Serratia rhodnii*. Compounds *VIII*, *XIa*, *XIf*, *XIVa* and *XIVb* showed stronger potency than isomers *VII*, *IXa*, *IXf*, *VIc* and *VID*, respectively. Only compound *XV* showed considerable activities against all species.

EXPERIMENTAL

All melting points are uncorrected. The IR spectra were run on a Pye-Unicam SP 3-100 spectrophotometer using KBr disc technique (wavenumbers in cm^{-1}). The ^1H NMR spectra were recorded on a Varian EM-390 90 MHz ^1H NMR spectrometer using TMS as internal standard; chemical shifts are given in ppm (δ — scale). The physical constants and analytical data of all newly synthesized compounds are listed in Table I.

Ethyl (4-Aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio)acetates (*IIa*, *IIb*)

A mixture of *Ia*, *Ib* (ref.²², 10 mmol), ethyl chloroacetate (1.23 g, 10 mmol) and fused sodium acetate (3 g) in ethanol (100 ml) was refluxed for 2 h. On cooling, the crystalline solid thus formed was collected and recrystallized from ethanol as colourless needles of *IIa*, *IIb*. *IIa*: ^1H NMR spectrum (CDCl_3): 7.05–7.50 (m, 5 H, aromatic); 2.88 (t, 2 H, CH_2 at C-8); 2.38 (t, 2 H, CH_2 at C-5); 1.50–2.00 (m, 4 H, $(\text{CH}_2)_2$ at C-6, 7); 3.90 (s, 2 H, SCH_2); 4.17 (q, 2 H, COOCH_2) and 1.30 (t, 3 H, CH_3). The IR spectra of *IIa*, *IIb* showed the presence of two bands at 2 240 for ($\text{C}\equiv\text{N}$) and at 1 740 for ($\text{C}=\text{O}$).

(4-Aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio)acethydrazides (*IIIa*, *IIIb*)

A mixture of *IIa*, *IIb* (10 mmol) and hydrazine hydrate 99% (0.5 ml, 10 mmol) in absolute ethanol (50 ml) was refluxed for 4 h. The reaction mixture was cooled in an ice bath and diluted with water (50 ml). The precipitate was filtered off and recrystallized from benzene as colourless plates. The IR spectra of *IIIa*, *IIIb* showed characteristic absorption bands at 3 260, 3 100 for (NHNH_2), at 2 240 for ($\text{C}\equiv\text{N}$) and at 1 660 for ($\text{C}=\text{O}$).

TABLE I
Physical constants and analytical data of the synthesized compounds

Compound	M.p. °C	Yield, % (Method A/ Method B) ^b	Formula (M.W.)	Calculated/Found				
				% C	% H	% N	% S	% Cl
<i>IIa</i>	109—110	90	$C_{20}H_{20}N_2O_2S$ (352.5)	68.16 68.50	5.72 5.37	7.95 7.90	9.10 9.00	— —
<i>IIb</i>	131 ^a	96	$C_{20}H_{19}ClN_2O_2S$ (386.9)	62.09 62.41	4.95 4.90	7.24 7.53	8.29 8.35	9.16 9.31
<i>IIIa</i>	163—164	92	$C_{18}H_{18}N_4OS$ (338.4)	63.88 63.79	5.36 5.30	16.56 16.81	9.47 9.16	— —
<i>IIIb</i>	179—180	95	$C_{18}H_{17}ClN_4OS$ (372.9)	57.98 58.11	4.60 4.55	15.03 15.20	8.60 8.49	9.51 9.56
<i>IVa</i>	269—272	64	$C_{18}H_{18}N_4OS$ (338.4)	63.88 64.02	5.36 5.31	16.56 16.70	9.47 9.90	— —
<i>IVb</i>	298—300	60	$C_{18}H_{17}ClN_4OS$ (372.9)	57.98 57.78	4.60 4.66	15.03 14.87	8.60 8.91	9.51 9.83
<i>Va</i>	207—208	95	$C_{25}H_{23}N_5O_2S$ (457.5)	65.63 65.67	5.07 5.25	15.31 15.42	7.01 7.11	— —
<i>Vb</i>	235—236	97	$C_{25}H_{22}ClN_5O_2S$ (492.0)	61.03 61.20	4.51 4.60	14.23 14.49	6.52 6.62	7.21 7.30
<i>VIa</i>	222—224	95	$C_{20}H_{21}N_5OS_2$ (411.5)	58.37 58.28	5.14 5.17	17.02 17.20	15.58 15.66	— —
<i>VIb</i>	188—189	96	$C_{25}H_{23}N_5OS_2$ (473.6)	63.40 63.75	4.89 4.83	14.79 14.74	13.54 13.74	— —
<i>VIc</i>	228—230	93	$C_{20}H_{20}ClN_5OS_2$ (446.0)	53.86 53.80	4.52 4.44	15.70 15.75	14.38 14.31	7.95 8.01
<i>VID</i>	159—160	91	$C_{25}H_{22}ClN_5OS_2$ (508.1)	59.10 59.19	4.36 4.40	13.78 13.59	12.62 12.86	6.98 7.11
<i>VII</i>	183—185	78	$C_{23}H_{21}ClN_4OS$ (437.0)	63.22 63.03	4.84 4.82	12.82 12.55	7.34 7.37	8.11 8.00
<i>VIII</i>	290—291	90	$C_{23}H_{21}ClN_4OS$ (437.0)	63.22 63.33	4.84 4.80	12.82 12.66	7.34 7.46	8.11 8.20
<i>IXa</i>	138—140	85	$C_{25}H_{22}N_4OS$ (426.5)	70.40 70.31	5.20 5.17	13.14 13.42	7.52 7.60	— —
<i>IXb</i>	168—170	86	$C_{26}H_{24}N_4O_2S$ (456.6)	68.40 68.70	5.30 5.21	12.27 12.17	7.02 7.18	— —
<i>IXc</i>	227—228	83	$C_{25}H_{21}ClN_4OS$ (461.0)	65.14 65.46	4.59 4.63	12.15 12.25	6.95 7.14	7.69 7.91

TABLE I
(Continued)

Com- ound	M.p. °C	Yield, % (Method A/ Method B) ^b	Formula (M.W.)	Calculated/Found				
				% C	% H	% N	% S	% Cl
<i>IXd</i>	207—209	85	$C_{25}H_{21}ClN_4OS$ (461·0)	65·14 65·28	4·59 4·59	12·15 12·00	6·95 7·25	7·69 7·81
<i>IXe</i>	180—182	91	$C_{26}H_{23}ClN_4O_2S$ (491·0)	63·60 63·91	4·72 4·87	11·41 11·32	6·53 6·77	7·22 7·10
<i>IXf</i>	214—215	92	$C_{25}H_{20}Cl_2N_4OS$ (495·4)	60·61 60·39	4·07 4·00	11·31 11·20	6·47 6·81	14·31 14·59
<i>Xa</i>	201	82	$C_{27}H_{23}ClN_4O_2S_2$ (535·1)	60·61 60·50	4·33 4·51	10·47 10·40	11·98 11·87	6·63 6·87
<i>Xb</i>	240—243	79	$C_{28}H_{25}ClN_4O_3S_2$ (565·1)	59·51 59·59	4·46 4·28	9·91 10·10	11·35 11·06	6·27 6·13
<i>Xc</i>	220	80	$C_{27}H_{22}Cl_2N_4O_2S_2$ (569·5)	56·94 56·94	3·89 3·89	9·84 9·99	11·26 11·01	12·45 12·49
<i>XIa</i>	289—290	90	$C_{25}H_{22}N_4OS$ (426·5)	70·40 70·09	5·20 5·15	13·14 13·27	7·52 7·30	—
<i>XIb</i>	261—262	92	$C_{26}H_{24}N_4O_2S$ (456·6)	68·40 68·11	5·30 5·30	12·27 12·16	7·02 7·09	—
<i>XIc</i>	270—275	95	$C_{25}H_{21}ClN_4OS$ (461·0)	65·14 65·34	4·59 4·42	12·15 12·43	6·95 7·21	7·69 7·39
<i>XId</i>	320	93	$C_{25}H_{21}ClN_4OS$ (461·0)	65·14 65·17	4·59 4·61	12·15 12·51	6·95 7·15	7·69 7·60
<i>XIe</i>	293—295	94	$C_{26}H_{23}ClN_4O_2S$ (491·0)	63·60 63·40	4·72 4·79	11·41 11·20	6·53 6·44	7·22 7·08
<i>XIf</i>	325	96	$C_{25}H_{20}Cl_2N_4OS$ (495·4)	60·61 60·54	4·07 3·96	11·31 11·28	6·47 6·80	14·31 14·43
<i>XII</i>	185—186	83	$C_{20}H_{15}ClN_4O_2S$ (410·9)	58·47 58·70	3·68 3·86	13·64 13·86	7·80 7·69	8·63 8·91
<i>XIII</i>	224—225	84	$C_{24}H_{21}ClN_4O_3S$ (481·0)	59·94 60·09	4·40 4·41	11·65 11·50	6·67 6·46	7·37 7·11
<i>XIVa</i>	250—251	95	$C_{20}H_{20}ClN_5OS_2$ (446·0)	53·86 54·04	4·52 4·50	15·70 15·59	14·38 14·06	7·95 8·19
<i>XIVb</i>	210	96	$C_{25}H_{22}ClN_5OS_2$ (508·1)	59·10 59·36	4·36 4·26	13·78 13·80	12·62 12·79	6·98 7·29
<i>XV</i>	205 (dec.)	83	$C_{18}H_{14}ClN_5OS$ (383·9)	56·32 59·39	3·68 3·71	18·25 18·02	8·35 8·51	9·24 9·07
<i>XVI</i>	>300	70	$C_{18}H_{14}ClN_3OS$ (355·8)	60·76 61·02	3·97 4·00	11·81 11·71	9·01 9·30	9·96 9·82

^a Literature²² gives m.p. 132°C; ^b for compounds prepared by the two methods.

3-Amino-4-aryl-5,6,7,8-tetrahydro-thieno[2,3-*b*]quinoline-2-carbohydrazides (*IVa*, *IVb*)

To a solution of *IIIa*, *IIIb* (10 mmol) in absolute ethanol (100 ml), anhydrous potassium carbonate (3 g) was added. The mixture was refluxed for 2 h, filtered while hot. The filtrate was allowed to cool, the precipitated product was collected and recrystallized from ethanol as pale yellow needles. *IVb*: ^1H NMR spectrum (CDCl_3): 7.10–7.60 (m, 4 H, aromatic); 3.03 (t, 2 H, CH_2 at C-8); 2.37 (t, 2 H, CH_2 at C-5); 1.50–2.00 (m, 4 H, $(\text{CH}_2)_2$ at C-6, 7); 5.40 (s, 2 H, NH_2 at C-3 and exchangeable with D_2O); 3.90 (d, 2 H, NH_2 hydrazide, and exchangeable with D_2O). The IR spectra of *IVa*, *IVb* showed characteristic absorption bands at 3 500, 3 360 for (NH_2), at 3 240, 3 090 for (NHNH_2), at 1 620 for ($\text{C}=\text{O}$) and at 1 580 for ($\text{C}=\text{N}$).

TABLE II
Biological screening of the tested compounds (inhibition zones in mm). For further details see Experimental

Com- ound	<i>Bacillus</i> <i>cereus</i>	<i>Micrococcus</i> <i>roseus</i>	<i>Staphylococcus</i> <i>aureus</i>	<i>Escherichia</i> <i>coli</i>	<i>Serratia</i> <i>rhodnii</i>
<i>IIa</i>	20	15	20	—ve	—ve
<i>IIb</i>	20	10	—ve	—ve	—ve
<i>IIIa</i>	20	20	—ve	—ve	—ve
<i>IIIb</i>	60	20	—ve	—ve	—ve
<i>IVb</i>	30	20	—ve	30	—ve
<i>Vb</i>	—ve	—ve	10	20	—ve
<i>VIa</i>	30	—ve	20	—ve	—ve
<i>VIb</i>	—ve	15	10	—ve	—ve
<i>VIc</i>	20	—ve	20	—ve	—ve
<i>VID</i>	30	—ve	20	—ve	—ve
<i>VII</i>	—ve	30	10	30	—ve
<i>VIII</i>	10	30	20	70	—ve
<i>IXa</i>	20	10	20	—ve	—ve
<i>IXf</i>	20	20	20	—ve	—ve
<i>Xa</i>	20	10	—ve	20	—ve
<i>Xc</i>	—ve	—ve	—ve	20	—ve
<i>XIa</i>	20	20	20	—ve	—ve
<i>XIf</i>	20	10	10	20	—ve
<i>XII</i>	60	30	60	50	—ve
<i>XIII</i>	40	30	60	50	—ve
<i>XIVa</i>	20	60	40	50	—ve
<i>XIVb</i>	50	10	20	50	—ve
<i>XV</i>	30	20	40	20	20

—ve: Compound not effective.

1-(4-Aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio)acetyl-4-phenylsemicbazides (*Va*, *Vb*)

A mixture of *IIIa*, *IIIb* (5 mmol) and phenyl isocyanate (0.55 ml, 5 mmol) in absolute ethanol (30 ml) was refluxed for 3 h. White crystalline product obtained on cooling was recrystallized from ethanol. The IR spectra of *Va*, *Vb* showed characteristic absorption bands at 3 340, 3 285 for (NH groups), at 2 205 for (C≡N) and at 1 710, 1 670 (C=O groups).

1-(4-Aryl-3-cyano-5,6,7,8-tetrahydro-2-quinolinylthio)acetyl-4-substituted-3-thiosemicbazides (*VIa*–*VId*)

A mixture of *IIIa*, *IIIb* (10 mmol) and methyl/phenyl isothiocyanate (10 mmol) in absolute ethanol (40 ml) was refluxed for 3 h. After cooling the solid thus formed was collected and recrystallized from ethanol in the form of white needles. The *VIa*: ^1H NMR spectrum ($\text{CF}_3\text{CO}_2\text{D}$): 7.15–7.60 (m, 5 H, aromatic); 2.60 (t, 2 H, CH_2 at C-5); 1.70–2.15 (m, 4 H, $(\text{CH}_2)_2$ at C-6, 7); 4.25 (s, 2 H, SCH_2) and 3.05–3.30 (m, 5 H, 2 H of CH_2 at C-8 and 3 H of $-\text{CH}_3$ group). The IR spectra of *VIa*–*VId* showed characteristic bands at 3 360, 3 200 for (NH groups), at 2 210 for (C≡N), at 1 720 for (C=O) and at 1 200 for (C=S).

1-(3-Cyano-4-*p*-chlorophenyl-5,6,7,8-tetrahydro-2-quinolinylthio)acetyl-3,5-dimethylpyrazole (*VII*)

A mixture of *IIIb* (3.73 g, 10 mmol) and acetylacetone (1 ml, 10 mmol) in ethanol (50 ml) was refluxed for 3 h. On concentration and cooling, the solid obtained was recrystallized from ethanol as pale yellow needles. IR spectrum: 2 210 for (C≡N) and 1 650 for (C=O).

1-[(3-Amino-4-*p*-chlorophenyl-5,6,7,8-tetrahydro-thieno[2,3-*d*]quinolin-2-yl)carbonyl]-3,5-dimethylpyrazole (*VIII*)

A) Compound *VII* (2.18 g, 5 mmol) in ethanol (50 ml) containing dissolved sodium (10 mg). The mixture was refluxed for 15 min. On cooling, the precipitate was collected and recrystallized from ethanol–chloroform mixture as yellow needles. ^1H NMR spectrum (CDCl_3): 7.10–7.50 (m, 4 H, aromatic); 3.07 (t, 2 H, CH_2 at C-8); 1.50–2.00 (m, 4 H, $(\text{CH}_2)_2$ at C-6, 7); 6.30 (s, 2 H, NH_2 and exchangeable with D_2O); 5.85 (s, 1 H, CH-pyrazole); 5.55 (s, 3 H, CH_3 attached to pyrazole ring); 2.35 (s, 5 H, 2 H of CH_2 at C-5 and 3 H of CH_3 group attached to pyrazole ring). IR spectrum: 3 500, 3 320 (NH₂); 1 630 (C=O); 1 590 (C≡N).

B) A mixture of *IVb* (1.86 g, 5 mmol) and acetylacetone (1 ml, 10 mmol) was refluxed in ethanol for 4 h. The product obtained after cooling upon recrystallization was identical to that described in method *A*.

 $\text{N}^1\text{-Benzylidene-}(4\text{-aryl-}3\text{-cyano-}5,6,7,8\text{-tetrahydro-}2\text{-quinolinylthio})\text{-acethydrazides (IXa–IXf)}$

To a solution of *IIIa*, *IIIb* (10 mmol) in ethanol (30 ml), an ethanolic solution of appropriate aldehyde (10 mmol) was added. The resulting mixture was refluxed for about 4 h. The solid formed on cooling was collected and recrystallized from ethanol as white needles. *IXe*: ^1H NMR spectrum (CDCl_3): 7.00–7.70 (m, 9 H, aromatic); 2.78 (t, 2 H, CH_2 at C-8); 2.38 (t, 2 H, CH_2 at C-5); 1.50–2.00 (m, 4 H, $(\text{CH}_2)_2$ at C-6, 7); 7.90 (s, 1 H, $\text{N}=\text{CH}$) and at 11.20 (s, 1 H, CONH and exchangeable with D_2O). The IR spectra of *IXa*–*IXf* showed characteristic absorption bands at 3 200 for (NH), at 2 220 for (C≡N), at 1 670 for (C=O) and at 1 600 for (C=).

2-Aryl-3-(3-cyano-4-*p*-chlorophenyl-5,6,7,8-tetrahydro-2-quinolinylthio)-acetamidothiazolidin-4-one (*Xa*—*Xc*)

A mixture of *IXd*—*IXf* (10 mmol) and thioglycolic acid (1.1 g, 12 mmol) in benzene (100 ml) was refluxed for 20 h, using Dean and Stark water-separator. The solvent was removed by distillation under reduced pressure. The residue was treated with sodium hydrogen carbonate solution, filtered off and crystallized from ethanol to give white needles of *Xa*—*Xc*. *Xc*: ^1H NMR spectrum (CDCl_3): 6.95—7.50 (m, 8 H, aromatic); 1.50—1.85 (m, 4 H, $(\text{CH}_2)_2$ at C-6, 7); 2.30—2.90 (m, 4 H: 2 H of CH_2 at C-8 and 2 H of CH_2 at C-5); 3.30—4.00 (m, 4 H: SCH_2 and CH_2 of thiazolidinone); 5.75 (s, 1 H, CH of thiazolidinone ring); 9.40 (s, 1 H, CONH and exchangeable with D_2O). The IR spectra of *Xa*—*Xc* showed characteristic bands at 3 220 for (NH), 2 220 for ($\text{C}\equiv\text{N}$), at 1 730 for ($\text{C}=\text{O}$, thiazolidinone) and at 1 690 for ($\text{C}=\text{O}$, amide).

N^1 -Benzylidene-3-amino-4-aryl-5,6,7,8-tetrahydro-thieno[2,3-*b*]quinoline-2-carbohydrazides (*XIa*—*XIf*)

A) Compound *IXa*—*IXf* (10 mmol) was suspended in ethanol (40 ml) containing dissolved sodium (10 mg). The contents were refluxed for 15 min. On cooling, the solid obtained was recrystallized from ethanol-chloroform mixture. The IR spectra of *XIa*—*XIf* showed characteristic absorption bands at 3 500, 3 340 for (NH_2), at 3 140 for (NH), at 1 620 for ($\text{C}=\text{O}$) and at 1 600, 1 580 for ($\text{C}=\text{N}$).

B) A mixture of *IVa*, *IVb* (10 mmol) and aromatic aldehyde (10 mmol) in ethanol (50 ml) was refluxed for 2 h. The precipitate formed on cooling was collected and recrystallized from ethanol-chloroform mixture. The products obtained by two synthetic routes are identical in all aspects.

3-Formylamino-11-*p*-chlorophenyl-7,8,9,10-tetrahydroquinolino-[3',2':4,5]thieno[3,2-*d*]pyrimidin-4(3*H*)-one (*XII*)

Compound *IVb* (1.86 g, 5 mmol) was refluxed for 4 h, with formic acid (20 ml). The reaction mixture was diluted with water, and the precipitate was recrystallized from benzene-light petroleum (40:60). ^1H NMR spectrum (CDCl_3): 7.25 (q, 4 H, aromatic); 3.10 (t, 2 H, CH_2 at C-7); 2.50 (t, 2 H, CH_2 at C-10); 1.60—2.00 (m, 4 H, $(\text{CH}_2)_2$ at C-8, 9); 7.70 (s, 1 H, CH or formyl group); 8.30 (s, 1 H, CH of pyrimidine). IR spectrum: 3 250 (NH); 1 720 ($\text{C}=\text{O}$, formyl group); 1 680 ($\text{C}=\text{O}$, pyrimidinone).

2-Methyl-3-diacetylamino-11-*p*-chlorophenyl-7,8,9,10-tetrahydroquinolino-[3',2':4,5]thieno[3,2-*d*]pyrimidin-4(3*H*)-one (*XIII*)

A suspension of *IVb* (1.86 g, 5 mmol) in redistilled acetic anhydride (20 ml) was refluxed for 3 h. The reaction mixture was cooled, diluted with water. The solid precipitate formed was collected and recrystallized from ethanol into colourless needles. ^1H NMR spectrum (CDCl_3): 7.27 (q, 4 H, aromatic); 3.15 (t, 2 H, CH_2 at C-7); 2.27 (t, 2 H, CH_2 at C-10); 1.50—1.90 (m, 4 H, $(\text{CH}_2)_2$ at C-8, 9); 2.35 (s, 6 H, 2 \times COCH_3); 2.00 (s, 3 H, CH_3). IR spectrum: 1 740 ($\text{C}=\text{O}$, acetyl groups); 1 690 ($\text{C}=\text{O}$, pyrimidinone).

1-[(3-Amino-4-*p*-chlorophenyl-5,6,7,8-tetrahydro-thieno[2,3-*b*]quinolin-2-yl)carbonyl]-4-substituted-3-thiosemicarbazides (*XIVa*, *XIVb*)

A mixture of *IVb* (1.86 g, 5 mmol) and methyl/phenyl isothiocyanate (5 mmol) in ethanol (30 ml)

was refluxed for 3 h. On cooling, the yellow precipitate formed was filtered off, dried and recrystallized from ethanol-chloroform into yellow needles. The IR spectra of *XIVa*, *XIVb* showed characteristic absorption bands at 3 200–3 100 (NH); 1 630 (C=O); 1 590 (C=N); 1 220 (C=S).

4-Amino-4-*p*-chlorophenyl-5,6,7,8-tetrahydro-thieno[2,3-*b*]quinolin-2-carbonylazide (*XV*)

Sodium nitrite solution (7 ml, 10%, 10 mmol) was added to a solution of *IVb* (3.7 g, 10 mmol) in acetic acid (10 ml) at room temperature during 5 min with stirring. The precipitated solid was filtered and crystallized from ethanol. IR spectrum: 3 500, 3 360 (NH₂); 2 110 (CON₃); 1 640 (C=O).

4-*p*-Chlorophenyl-5,6,7,8-tetrahydro-1*H*-imidazolo[4',5':4,5]thieno[2,3-*b*]quinolin-2(3*H*)-one (*XVI*)

Compound *XV* (0.2 g, 0.5 mmol) was refluxed for 3 h in tert-butanol (20 ml). The reaction mixture was diluted with water (20 ml), the precipitate was collected and recrystallized from N,N-dimethylformamide-methanol mixture. ¹H NMR spectrum (CD₃SOCD₃): 7.30 (q, 4 H, aromatic); 2.90 (t, 2 H, CH₂ at C-8); 1.50–2.00 (m, 4 H, (CH₂)₂ at C-6, 7); 3.80 (s, 2 H, 2 × NH and exchangeable with D₂O). IR spectrum: 3 100–3 150 (NH); 1 670 (C=O).

Biological Screening

Twenty-three compounds were screened in vitro for their antimicrobial activities against: *Bacillus cereus*, *Micrococcus roseus*, *Staphylococcus aureus*, *Escherichia coli* and *Serratia rhodnii* using paper disc diffusion method²³. Sterilized 5 mm paper disc immersed in drug solution (20 mg in 1 ml of N,N-dimethylformamide) was placed in the petridish containing 25–30 ml of nutrient agar inoculated with 18–24 h test culture. Incubation was carried out at 37°C for 36 h and zones of inhibition was measured in mm.

REFERENCES

1. Bruce-Chwatt L. J.: *Chemotherapy of Malaria*, 2nd ed. World Health Organisation, Geneva 1981.
2. Sweeney T. R., Strube R. E.: *Burger's Medicinal Chemistry*, (Wolff M. F., Ed.), Part II, p. 333. Wiley, New York 1979.
3. Elslager E. F.: *Prog. Drug Res.* **18**, 99 (1974).
4. Cronin T. H., Hess H. J. E.: *S. African* **6**, 706, 512; *Chem. Abstr.* **70**, 6841, (1969).
5. Bhamaria R. P., Bellare R. A., Deliwala C. V.: *Indian J. Exp. Biol.* **6**, 62 (1988).
6. Bennur S. C., Jigajinni V. B., Badiger V. V.: *Rev. Roum. Chim.* **21**, 757 (1976).
7. Van der Kerk G. J. M.: *Proc. Brit. Insectic Fungic Conf.* 4th, 2, 562 (1967).
8. Pluimers C. W., Sijpesteijn Kaars A.: *Ann. Appl. Biol.* **57**, 465 (1966).
9. Merrill, Wicox: *J. Med. Chem.* **11**, 171 (1968).
10. Tiwari S. S., Sengupta A. K., Kumar J.: *J. Indian Chem. Soc.* **51**, 402 (1974).
11. Ramachander, Srinivasan V. R.: *J. Sci. Ind. Res. C* **21**, 70 (1962).
12. Pansy F. E., Stander H., Donovik: *Am. Rev. Tubere* **65**, 761 (1952).
13. Orestano G.: *Chem. Abstr.* **48**, 1, 275a, 327c (1946).
14. Rubbo S. D., Edgar J., Aughan: *Am. Rev. Tubere* **76**, 331 (1957).
15. Zoha N. K.: *Formacio* **19**, 553 (1971).

16. Parmar S. S., Duvied O. C., Chandharia, Gupta T. K.: *J. Med. Chem.* **15**, 99 (1972).
17. El-Shafei A. K., Hassan Kh. M., El-Kashef H. S.: *J. Indian Chem. Soc.* **54**, 60 (1977).
18. Lipkir A. E., Vakhreeva K. I., Duchin P. I., Kulikova D. A., Rudizit E. A.: *Khim. Zh.* **11**, 461 (1977).
19. Pathak R. B., Bahel S. C.: *J. Indian Chem. Soc.* **57**, 1108 (1980).
20. Wrzeino I., Pietkiewicz K., Krzysztonk B., Michalska W., Drozdowska M.: *Pharmazie* **33**, 266 (1978).
21. Sharma T. C., Bokadia M. M., Reddy N. J.: *Indian J. Chem. B* **19**, 228 (1980).
22. Vieweg H., Leistner S., Wagner G.: *Pharmazie* **43**, 358 (1988).
23. Czerninsky G., Diding N., Ouchterlong O.: *Scan. J. Clin. Lab. Invest.* **7**, 259 (1955); *Chem. Abstr.* **50**, 7223e (1956).